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Abstract

Large language models leverage internet-scale text data, yet embodied AI
remains constrained by the prohibitive costs of physical trajectory collec-
tion. Desktop environments—particularly gaming—offer a compelling alter-
native: they provide rich sensorimotor interactions at scale while maintain-
ing the structured observation-action coupling essential for embodied learn-
ing. We present D2E (Desktop to Embodied AI), a framework that demon-
strates desktop interactions can serve as an effective pretraining substrate
for robotics embodied AI tasks. Unlike prior work that remained domain-
specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA),
D2E establishes a complete pipeline from scalable desktop data collection
to verified transfer in embodied domains. Our framework comprises three
components: (1) the OWA Toolkit that unifies diverse desktop interactions
into a standardized format with 152× compression, (2) the Generalist-IDM
that achieves strong zero-shot generalization across unseen games through
timestamp-based event prediction, enabling internet-scale pseudo-labeling,
and (3) VAPT that transfers desktop-pretrained representations to phys-
ical manipulation and navigation. Using 1.3K+ hours of data (259 hours
of human demonstrations, and 1K+ hours of pseudo-labeled gameplay),
we achieve a total of 96.6% success rate on LIBERO manipulation and
83.3% on CANVAS navigation benchmarks. This validates that sensorimo-
tor primitives in digital interactions exhibit sufficient invariance to transfer
meaningfully to physical embodied tasks, establishing desktop pretraining
as a practical paradigm for robotics. We will make all our work public, in-
cluding the OWA toolkit, datasets of human-collected and pseudo-labeled,
and VAPT-trained models. (Demo available at link)

1 Introduction

Large-scale datasets have driven recent progress in large language models (LLMs) (Kaplan
et al., 2020; Hoffmann et al., 2022), where pretraining on internet-scale resources enables
strong generalization across diverse downstream tasks. In contrast, embodied AI has yet to
experience such a scaling breakthrough. Unlike text, which can be collected from the web
with minimum effort, embodied trajectories demand specialized hardware, costly human
operation, and complex pipelines for annotation (Mandlekar et al., 2019; Qin et al., 2023;
Fu et al., 2024; Cheng et al., 2024; Park et al., 2024). As a result, most existing datasets
remain relatively small, domain-specific, and fragmented across incompatible formats (Geng
et al., 2025), preventing the emergence of a true “data flywheel” for embodied AI.
Desktop interactions—screen, keyboard, and mouse—offer a compelling alternative for scal-
ing vision-action learning (Baker et al., 2022; Raad et al., 2024). These interfaces are stan-
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Figure 1: Overview of D2E framework. (1) The OWA Toolkit captures 335.6 hours of rich desk-
top demonstrations across 31 games with 152× compression. (2) The Generalist-IDM uses next-
event prediction with temporal offset (NEP-τ) to achieve OOD generalization, enabling pseudo-
labeling of 1K+ hours of YouTube gameplay. (3) Vision-Action Pretraining transfers desktop-
pretrained representations to embodied AI, achieving 96.6% success on LIBERO manipulation and
83.3% on CANVAS navigation benchmarks which demonstrates desktop-to-robotics transfer.

dardized, human-centric, and naturally abundant: millions of users generate rich interaction
trajectories through everyday digital activities. Crucially, desktop environments preserve
the tight observation-action coupling essential for embodied learning while abstracting away
hardware-specific constraints (Tang et al., 2025; Shridhar et al., 2020; Raad et al., 2024).
Gaming interactions, in particular, exhibit complex sensorimotor patterns—navigation, ob-
ject manipulation, strategic planning—that mirror many embodied AI challenges, yet are
freely shared at internet scale through gameplay videos.
We introduce D2E (Desktop to Embodied AI), a framework that systematically trans-
forms desktop interactions into a scalable pretraining substrate for embodied AI. D2E ad-
dresses two fundamental challenges: establishing a unified pipeline for high-quality desktop
data collection, and extending beyond manual annotations to leverage the vast repository
of unlabeled internet videos.
Our first contribution, the Open-World Agents (OWA) Toolkit, provides the infras-
tructure for scalable desktop data capture. Built on Windows APIs and GStreamer (Mi-
crosoft Corporation; GStreamer Team), OWA’s ocap recorder synchronizes multimodal
streams—screen, keyboard, and mouse—into time-aligned events, while our OWAMcap for-
mat achieves order-of-magnitude compression improvements over existing formats. Through
OWA, we collected 335 hours of human demonstrations across 31 diverse games and appli-
cations, establishing a foundation for desktop-based pretraining.
Beyond human demonstrations, we introduce the Generalist Inverse Dynamics Model
(Generalist-IDM) to demonstrate a pathway toward internet-scale data collection. By re-
formulating action prediction as timestamp-aware next-event prediction (NEP-τ), our model
achieves strong zero-shot generalization—substantially outperforming specialist baselines on
unseen games with minimal compute requirements. This generalization capability enables
automatic pseudo-labeling of YouTube gameplay videos, expanding our dataset by over
1, 000 hours without additional human annotation.
We demonstrate that desktop-pretrained representations transfer meaningfully to physi-
cal robotics through Vision-Action PreTraining (VAPT). Models pretrained on our
combined desktop corpus show consistent improvements on standardized benchmarks: It
achieves a total success rate of 96.6% on LIBERO manipulation (Liu et al., 2023) and
83.3% on CANVAS navigation (Choi et al., 2024). These results establish, for the first time,
that the sensorimotor patterns learned from desktop interactions can directly enhance per-
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formance in embodied AI domains, validating desktop data as a practical alternative to
costly physical data collection.
Our contributions are threefold:

1. OWA Toolkit: A framework that contains ocap for synchronized event recording
with FHD/QHD 60 Hz support, OWAMcap format for compact storage, and an
optimized data pipeline for ML training—achieving up to 152× compression and
16× lower average disk read per image compared to TorchCodec; used to collect
335 hours of human demonstrations.

2. Generalist-IDM: An inverse dynamics model that outperforms game-specific Spe-
cialist IDMs, exhibiting out-of-domain generalization and in-context adaptation
(e.g., calibrating mouse scale). Trained on OWA-collected data with around 192
H100-hours (∼ $800), the strong generalization of Generalist-IDM allows us to
pseudo-label over 1K+ hours of YouTube gameplay.

3. VAPT foundation model: A vision-action pretrained model trained on 1.3K
hours of desktop data from OWA and Generalist-IDM pseudo-labeling, transfer-
ring desktop knowledge to robotics. VAPT achieves 96.6% success on manipulation
(LIBERO) and 83.3% on navigation (CANVAS).

2 Related Work

Collecting Data for Vision-Action Pretraining. Large-scale vision-action (or vision-
language-action) pretraining depends on multimodal corpora that pair perception with
grounded actions across diverse tasks (Kaplan et al., 2020; Hoffmann et al., 2022). Recent
embodied agents unify perception and control in a single model across heterogeneous do-
mains (Reed et al., 2022; Firoozi et al., 2024; Wen et al.). In robotics, resources are emerging:
RT-1 (Brohan et al., 2022) and RT-2 (Zitkovich et al., 2023) scale vision–language–action
to real robots; Open X-Embodiment aggregates heterogeneous datasets to train RT-X mod-
els (O’Neill et al., 2024); and LeRobot (Cadene et al., 2024) lowers the barrier to collecting
and reusing real-world datasets. Despite this progress, assembling real-robot interaction at
meaningful scale remains challenging because of fragmented tooling, hardware overhead, and
safety constraints (Xing et al., 2025; Park et al., 2024; Geng et al., 2025). Similarly, desktop
interfaces lack open, standardized corpora and toolkits, bottlenecking vision-action pretrain-
ing (Tang et al., 2025; Chen et al., 2025). VPT (Baker et al., 2022) offers human-annotated
and pseudo-labeled Minecraft trajectories but remains single-domain, while SIMA (Raad
et al., 2024) demonstrates cross-game generalization through a unified interface yet keeps
data proprietary. PLAICraft (He et al., 2025) advances multimodal Minecraft logging, but
these efforts are environment-specific; broad cross-application generalization requires uni-
fied schemas that cover diverse desktop applications (McCarthy et al., 2025). Unlike prior
single-domain or proprietary efforts, we contribute a open, unified, multi-game desktop-
action dataset (31 games; 335h̃) and an open-source toolkit, explicitly validated for transfer
to embodied tasks.

Inverse Dynamics Models. Agents observe the states up to time t − 1 and predict the
action at time t. In contrast, Inverse Dynamics Models (IDMs) condition on surrounding
states—past and future—to infer the action taken at time t. IDMs have been pivotal for
scaling imitation learning to Internet-scale datasets, serving as pseudo-labelers for otherwise
unlabeled action data (Ye et al., 2024; Bjorck et al., 2025). In robot manipulation, UniPi (Du
et al., 2023) explores text-guided video generation to couple language grounding with policy
learning, and LAPA (Ye et al., 2024) shows that latent action pretraining from videos can
improve scalability and robustness. On the desktop side, VPT (Baker et al., 2022) trained
a Specialist IDM on a human-annotated Minecraft trajectories and used it to pseudo-label
thousands of hours of Minecraft gameplay on YouTube. We demonstrate the potential of a
Generalist-IDM, spanning multi-game, desktop-wide settings (McCarthy et al., 2025). Our
design also differs from common tick-based IDMs (Baker et al., 2022; Ye et al., 2024), which
fix a prediction window (e.g., 50 ms) and thus must emit a prediction each tick—inefficient in
sparse-event regimes and coarse in temporal resolution. Instead, our IDM predicts the event
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and its timestamp, enabling event-driven modeling that avoids “no-op” ticks and makes
more efficient use of inference context.

3 Open-World Agents Toolkit
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Figure 2: OWA Toolkit’s recording and storage architecture. (Left) ocap recorder captures
perfectly synchronized multimodal streams—video (60 FPS), audio, mouse events, keyboard in-
puts, and window states—with precise time alignment, enabling accurate reconstruction of desktop
interactions. (Right) OWAMcap format revolutionizes desktop data storage through its dual-layer
architecture: standardized MCAP container for crash-safe metadata and event logging, paired with
external media referencing for optimized video storage using H.265 codec (217× compression). This
design achieves dramatic storage reduction—152× for VPT dataset (1.06 TiB → 7.12 GiB) and
34.45× for CS:GO dataset (689 GiB → 20 GiB)—while maintaining event fidelity and enabling
efficient random access for training.

We introduce the Open-World Agents (OWA) Toolkit alongside large-scale desktop
data, establishing both the infrastructure and data foundation for embodied AI research.
The toolkit provides a unified interface (Zhang et al., 2024; 2025) for capturing interaction
patterns across diverse applications without domain-specific action space definitions, while
our data release demonstrates the practical scalability and diversity achievable through this
standardized approach.

3.1 ocap: Synchronized Desktop Recorder

Existing desktop recording tools lack critical features for desktop data collection. Content
creation tools like OBS Studio (OBS Project) focus on streaming quality, while action mod-
eling requires synchronized input event logging to capture the precise keyboard and mouse
actions that caused visual changes. The ocap (Omnimodal CAPture) tool addresses this
gap by capturing desktop signals in a synchronized manner, recording video, audio, key-
board, and mouse interactions with high temporal precision. Figure 2 (Left) illustrates an
event timeline where these multimodal streams are well synchronized. By leveraging hard-
ware acceleration using Windows APIs, we achieve real-time FHD/QHD recording at 60
Hz on consumer-grade GPUs with low overhead, ensuring that normal user activities re-
main unaffected and effectively lowering the hardware barrier for large-scale data collection.
Implementation details are in Appendix A.

3.2 OWAMcap: Standardized Data Format

Prior desktop datasets suffer from storage inefficiency and poor random access capabilities.
Existing approaches (Baker et al., 2022; Pearce & Zhu, 2022) either store image-encoded
frames in monolithic tables unsuitable for real-time recording, or use formats like JSONL
that lack proper indexing and crash-safety. To address these limitations, we introduce the
OWAMcap, which extends the industry-standard MCAP format (Foxglove, 2022)—widely
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adopted in robotics for multimodal sensor logging—with minimal additions specific to desk-
top datasets. Figure 2 (Right) shows the overall structure of OWAMcap. Concretely, it
adds three components to standard MCAP: (1) metadata that specifies a profile identifier,
desktop-specific message schemas, and encoding conventions for downstream processors, (2)
JSON schemas for desktop events (screen, keyboard, mouse), and (3) MediaRef—our exter-
nal media reference convention that enables efficient video storage through file paths, URIs,
or embedded data (e.g., data:image/png;base64,...) while maintaining MCAP compat-
ibility. By leveraging MCAP’s proven architecture, we inherit efficient indexing, crash-safe
writes, and broad ecosystem support. Storage efficiency is critical for foundation model train-
ing, where disk I/O often bottlenecks throughput (Zhao & Krähenbühl, 2023; Kim et al.,
2024a). OWAMcap’s MediaRef enables modern video codecs (H.265) without constraining
dataset layout. Table 8 shows that raw 1920×1080 captures require 5.97 MB per frame (358
MB/s at 60 FPS), while H.265 achieves 217× compression with sufficient visual quality for
agent training. The MKV container provides reliable audio-video synchronization and crash
resilience during recording. More detailed format comparisons are provided in Appendix A.

3.3 Optimized Data Pipeline

Training foundation models on OWAMcap data requires specialized data loading strate-
gies to maximize throughput, as I/O and data pipeline bottlenecks have been identified as
critical limitations in large-scale video model training (Zhao & Krähenbühl, 2023; Leclerc
et al., 2023). We present a four-stage optimized pipeline: (1) Media transcoding with x264
parameters with fixed keyframe intervals and disabled B-frames for consistent random ac-
cess; (2) Event dataset conversion to HuggingFace datasets (Lhoest et al., 2021) format for
efficient sequential and random access; (3) Fixed Sequence Length (FSL) dataset generation
through tokenization and packing to maximize training throughput; (4) On-the-fly media
loading with adaptive batch decoding that defers expensive media operations until training
time.

Adaptive Batch Decoding Strategy Our adaptive batch decoding algorithm (1) seeks
to the target frame; (2) demuxes and decodes until a keyframe is encountered; (3) upon hit-
ting a keyframe, resumes seeking to the target frame. This provides consistent performance
across fine-grained, coarse-grained, and mixed access patterns.

Benchmark Setting To quantify the effect of the optimized pipeline and adaptive batch
decoding, we measure performance using single-worker random-access iteration over an FSL-
Dataset constructed from 64 five-minute Minecraft videos. We report (i) image throughput
(img/s) and (ii) average disk bytes read per image (KB/img; total bytes read during iter-
ation divided by the number of images, capturing seeking and GOP decode overhead). For
batch decoding, both TorchCodec v0.6.0 and our implementation are used in a per-sample
manner: for each FSLDataset sample, we issue a single batched query that requests all
images within the sample at once (no cross-sample batching or parallel workers).
Under this setting, our adaptive batch decoding achieves 85.08 img/s (7.45× over baseline,
11.42 img/s) while reducing avg. disk read per image to 50.63 KB (6.04× less than baseline,
305.69 KB/img) and 16× less than TorchCodec v0.6.0 batch decoding (824.37 KB/img;
TorchCodec (PyTorch Team, 2024)). Table 1 summarizes the results. Table 2 compares our
approach against existing end-to-end training frameworks.

Framework Training Throughput For InternVL3-1B training on identical hard-
ware(DGX H100), our codebase achieves 1024 img/s, while OpenVLA-OFT reaches 666
img/s. It’s also noteworthy that our codebase loads 448×448 size images but OpenVLA-
OFT loads smaller, 256×256 size images.

3.4 Collecting Human Demonstrations at Scale

We collect a desktop dataset that provides high-quality, synchronized multimodal signals
for vision-action pretraining. While the OWA Toolkit can capture arbitrary desktop tasks
(e.g., web surfing, productivity applications) with multimodal events—including the screen,
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VIDEO 0SEQUENCE 0

SEQUENCE 1

SEQUENCE 2

SEQUENCE 3 VIDEO 1reference

FSL Dataset Table Video Files

Figure 3: Our FSLDataset design, coupled
with a batched decoding API, converts fine-
grained random I/O into coarse, coalesced
random access, thereby avoiding the limita-
tions of large-scale filesystems that are inef-
ficient for small random reads.

Table 1: Benchmark on FSLDataset
(Minecraft, 64×5 min, 640×360 @ 20Hz).
“x264 params”: fixing keyframe interval
and removing B-frames.

Configuration Throughput Avg. Read
(img/s) (KB/img)

Baseline 11.42 305.69
+ x264 params 23.18 125.45

+ TorchCodec 51.39 824.37
+ Ours 85.08 50.63

Table 2: Framework comparison
Framework Throughput

(img/s)
OWA Toolkit 1024
OpenVLA-OFT 666

mouse, and keyboard—we focus on gameplay interactions. Gameplay data offer behavioral
diversity while minimizing privacy concerns, which enables broad community contribution
and data sharing. Using the ocap desktop recorder for efficient collection, 14 human an-
notators recorded the dataset. The dataset comprises 335 hours of newly collected human
demonstrations across 31 games. It spans diverse genres, including 3D third-person games
such as GTA V and Cyberpunk 2077, first-person games like Apex Legends and Minecraft,
and 2D top-down games like Brotato and Stardew Valley. This variety captures a wide range
of visual environments and interaction styles, making it well-suited for vision-action pretrain-
ing. Further details on the dataset and collection process are provided in Appendix B.

4 Generalist Inverse Dynamics Model

Collecting large-scale action data through manual demonstrations is infeasible due to pro-
hibitive costs. The OWA Toolkit (Section 3) closes the instrumentation gap and standardizes
over 2.6k hours of synchronized trajectories (Table 10), yet human capture alone remains
a bottleneck relative to the ocean of unlabeled gameplay available online. VPT (Baker
et al., 2022) addressed this by leveraging Inverse Dynamics Models (IDMs) to pseudo-label
YouTube videos, but was limited to Minecraft, restricting generalization and dataset di-
versity. We train a Generalist-IDM on our multi-domain corpus collected via the OWA
Toolkit, enabling generalization across heterogeneous interaction patterns. Our model can in-
fer actions in out-of-distribution environments never seen during training, as demonstrated
in Section 5.1. This capability enables pseudo-labeling of large-scale YouTube gameplay
videos across diverse games, laying the foundation for internet-scale dataset collection.

4.1 Timestamp-Based Event Tokenization

We represent desktop interactions as discrete events, each serialized into a short token se-
quence bounded by <EVENT_START> and <EVENT_END>. Observation events capture screen
updates (Screen Events), while action events represent user inputs: Keyboard Events (key
presses/releases) and Mouse Events (clicks, movements, scrolls). This event-level serializa-
tion unifies heterogeneous inputs into a consistent sequential representation for transformer
modeling (Vaswani et al., 2017). For example, the tokens emitted for a single event follow
the format below:

<EVENT_START>{TYPE}{TIMESTAMP}{DETAIL}</EVENT_END> (1)
While most existing IDMs adopt a tick-based prediction (Baker et al., 2022; Ye et al.,
2024)—predicting actions at fixed intervals—our design employs timestamp-based predic-
tion. Unlike tick-based approaches that use a fixed prediction window (e.g., 50 ms), our
IDM directly predicts both the event and its timestamp, preserving the asynchronous tim-
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ing captured by ocap and converted corpora. This design provides two key advantages.
First, it maintains cross-modal alignment without resampling, allowing screen, keyboard,
and mouse streams to stay synchronized even when their natural cadences differ. Second,
timestamp-based prediction avoids generating empty ticks when no actions occur. By skip-
ping unnecessary “no-op” tokens, our approach makes more efficient use of the limited infer-
ence context, enabling denser packing of relevant information and improving the efficiency
of both learning and inference. A detailed specification of the event tokenization process is
provided in Appendix C.

4.2 NEP-τ : Next-Event Prediction with Temporal Offset

Once raw desktop interactions are converted to event token sequences, we train the
Generalist-IDM with a next-event-prediction objective. Given a trajectory consisting of ob-
served states and actions (o1, a1, o2, a2, . . . , oT ), where each action at is taken at state ot

and leads to state ot+1, the goal is to predict action at based on all preceding observations
and actions. This objective enables the model to learn mappings between observed states
and actions while preserving temporal dependencies within the trajectory.

LNEP = −E(o1:T ,a1:T )∼D

[
T∑

t=1
log Pθ

(
at

∣∣ o1:t, a1:t−1
)]

(2)

Inspired by IDM-K (Tot et al., 2025), which conditions on extended future trajectories to
improve inverse dynamics, we adopt NEP-τ , a temporal-offset variant of NEP. Unlike IDM-
K, which jointly encodes entire past and future trajectories, our method simply rearranges
the (observation, action) sequences by shifting the observation window forward by τ steps.
This allows the model to incorporate future observations up to τ steps ahead without en-
coding entire future trajectories, enhancing temporal consistency. Formally, the objective
is:

LNEP-τ = −E(o1:T ,a1:T )∼D

[
T∑

t=1
log Pθ

(
at

∣∣∣ o1: min(t+τ, T ), a1:t−1

)]
(3)

4.3 Pseudo-Labeling with YouTube Gameplay Videos

We focus on pseudo-labeling gameplay videos because they are abundant, actively shared,
and largely free of personally identifiable content, sidestepping the privacy concerns.
YouTube gameplay footage also exhibits consistent HUD layouts and frame rates, which
align well with the OWA Toolkit’s event schema. Our pipeline first curates long-form game-
play uploads with permissive licenses, retrieves them at 20 Hz, and converts the frames into
Screen events so they can be fed through the same tokenizer used for human demonstrations.
Building on this, we train the Generalist-IDM using the InternVL3-1B (Zhu et al., 2025)
architecture with the NEP-τ objective. The Generalist-IDM then produces the correspond-
ing Keyboard and Mouse events via the NEP-τ objective, after which we apply consistency
checks—including removing extended inactive spans as described in Appendix B—before
materializing the pseudo-labels. Applying this procedure contributes 1055 hours of addi-
tional trajectories across twenty publicly shared titles, as summarized in Table 12, comple-
menting the curated corpus described in Table 10 and Section 3. Importantly, because our
model is designed to be generalist, we do not require any filtering of domain-specific inter-
faces such as inventory menus or map screens. Instead, these heterogeneous visual contexts
are naturally included as part of the pseudo-labeled demonstrations, broadening the scope
of training data without additional heuristics. These pseudo-labeled trajectories form the
seed for scaling desktop vision-action pretraining to internet-scale data sources.

5 Results

5.1 Performance of the Generalist-IDM

In-Distribution Performance. We begin by evaluating the Generalist-IDM on six in-
distribution video games spanning both 2D and 3D settings, comparing its performance to
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Specialist-IDMs trained individually on each game. We employ an autoregressive inference
pipeline to generate actions and evaluate model performance across multiple metrics. Further
details are provided in Appendix F. As shown in Table 3 and Table 4, our Generalist-IDM
achieves strong performance across all environments. Notably, it yields large gains in Pearson
correlation (e.g., +39.5 points on Stardew Valley X) and Keyboard accuracy (e.g., +57.6
points on Brotato), demonstrating robust generalization over diverse control dynamics.

Game Model Pearson Scale Ratio Keypress Acc.
X Y X Y Kbd Mouse

Brotato IDM 65.92 67.56 1.04 1.04 28.80 97.59
G-IDM 73.65 82.03 1.37 1.29 86.36 98.50

Stardew Valley IDM 43.47 63.69 1.19 1.18 69.35 91.90
G-IDM 82.98 75.57 1.13 1.17 74.35 96.43

Core Keeper IDM 48.03 62.09 1.15 1.17 69.42 92.33
G-IDM 77.25 64.55 1.43 1.51 70.00 94.01

Table 3: Evaluation results on 2D games

Game Model Pearson Scale Ratio Keypress Acc.
X Y X Y Kbd Mouse

Apex Legends IDM 65.16 57.84 1.29 1.25 67.47 99.33
G-IDM 83.90 85.27 1.13 1.23 76.55 99.67

GTA V IDM 63.64 81.08 1.39 1.23 58.13 94.65
G-IDM 79.44 83.89 1.09 1.42 69.83 94.11

Minecraft IDM 59.83 63.83 1.20 1.22 53.54 82.48
G-IDM 80.29 78.38 1.24 1.27 60.97 91.65

Table 4: Evaluation results on 3D games

Out-of-Distribution Generalization. We evaluate the generalization of our Generalist-
IDM on two unseen games: Battlefield 6 (3D) and Ogu and the Secret Forest (2D). In Bat-
tlefield 6, it matches or slightly outperforms the Specialist-IDM (achieving 63% keyboard
accuracy), indicating solid transfer to an unseen FPS similar to the training set. Moreover,
when provided with a few-shot prefix that fills the first 2048 tokens in our streaming infer-
ence, the predicted scale ratio improves significantly—indicating that the Generalist-IDM
exhibits in-context ability to adapt to mouse sensitivity. In Ogu and the Secret Forest, it
more than doubles the Specialist-IDM’s performance (from about 12% to nearly 28%), show-
ing that Generalist-IDM delivers substantial gains even under a large domain gap. Taken
together, these results demonstrate that Generalist-IDM is capable of adapting across both
familiar and substantially different environments.

Model Pearson Scale Ratio Keypress Acc.
X Y X Y Kbd Mouse

Battlefield 6
IDM (FT) 57.28 61.74 1.00 1.00 62.44 94.55
G-IDM (ZS) 57.36 63.17 3.13 3.56 47.75 92.11
G-IDM (FS) 56.79 63.40 1.07 1.05 52.64 93.89
G-IDM (FT) 54.90 62.89 1.06 1.04 58.55 93.41

Ogu Forest
IDM (FT) – – – – 11.73 –
G-IDM (ZS) – – – – 27.80 –
G-IDM (FS) – – – – 27.97 –
G-IDM (FT) – – – – 26.88 –

Table 5: Out-of-distribution performance on unseen
3D and 2D games. Note that Ogu Forest uses only
keyboard inputs. Figure 4: Trajectory of Battlefield 6.

5.2 Transferability to Downstream Tasks

To evaluate transferability to downstream tasks, we use the InternVL3-1B model as our
backbone, which is also the architecture used in our Generalist-IDM. We train this model
under two settings: VAPT without pseudo-labels, which uses only the human-collected
dataset (259 hours), and VAPT with pseudo-labels, which augments the human data
with a pseudo-labeled dataset generated from YouTube videos with the Generalist-IDM,
resulting in a total of over 1.3K hours of training data. Further details can be found in
Appendix E

Robot Manipulation. For robot manipulation, we evaluate on the LIBERO bench-
mark (Liu et al., 2023). As shown in Table 6, the baseline (InternVL3-1B) performs relatively
poorly. In contrast, VAPT without pseudo-labels achieves a substantial improvement, reach-
ing 96.6% on Total and 93.6% on long-horizon tasks. These results are comparable to or even

8



Under Review

surpass much larger models such as OpenVLA (7B) and SmolVLA (2.25B). Interestingly,
and contrary to intuition, incorporating pseudo-labels does not provide additional gains on
manipulation tasks. We attribute this to the nature of manipulation tasks, where precise
human supervision is more critical than data scale and diversity, making pseudo-labels less
effective. Overall, our approach demonstrates that even with only 1B parameters, it can
match or outperform significantly larger policies, with particularly strong advantages on
long-horizon tasks where careful action sequencing is essential.

Method Params VLA Pt Spatial Object Goal 10 (long) Total
Octo (Octo Model Team et al., 2024) 93M Yes 78.9 85.7 84.6 51.1 75.1
OpenVLA (Kim et al., 2024b) 7B Yes 84.7 88.4 79.2 53.7 76.5
DiT Policy (Dasari et al., 2025) 115M No 84.2 96.3 85.4 63.8 82.4
pi0 Black et al. (2024) 3.3B Yes 90.0 86.0 95.0 73.0 86.0
SmolVLA (Shukor et al., 2025) 2.25B No 93.0 94.0 91.0 77,0 88.7
PI-KI (Driess et al., 2025) 300M Yes 98.0 97.8 95.6 85.8 94.3
OpenVLA-OFT (Kim et al., 2025) 7B Yes 97.6 98.4 97.9 94.5 97.1
Baseline (InternVL3-1B) 1B No 94.4 97.0 93.6 54.2 84.8
+ VAPT w/o pseudo 1B No 95.8 98.4 98.6 93.6 96.6
+ VAPT w/ pseudo 1B No 89.6 98.2 93.8 87.2 92.2

Table 6: Results on Libero tasks (success rates, %).

Robot Navigation. For robot navigation, we evaluate on the CANVAS benchmark Choi
et al. (2024), a challenging navigation benchmark that tests robustness to both misleading
and precise instructions across diverse simulated environments. Compared to the baseline,
our VAPT framework shows clear gains: without pseudo-labels, performance matches the
baseline (75.3%), but with pseudo-labeled demonstrations it rises to 83.3%, an 8-point im-
provement. The effect is strongest under misleading instructions, as in sim_orchard (86.7%
vs. 53.3%) and sim_street_sidewalk (73.3% vs. 40.0%), while precise instructions remain
near ceiling. These results show that pseudo-labeling is highly effective for navigation tasks,
where success depends more on high-level planning than on the precise low-level control
required in manipulation.

Environment Instruction Baseline VAPT w/o pseudo VAPT w/ pseudo

sim_art_museum misleading 53.3 (8/15) 33.3 (5/15) 53.3 (8/15)
precise 100.0 (15/15) 93.3 (14/15) 93.3 (14/15)

sim_office misleading 100.0 (15/15) 93.3 (14/15) 100.0 (15/15)
precise 100.0 (15/15) 100.0 (15/15) 100.0 (15/15)

sim_orchard misleading 53.3 (8/15) 53.3 (8/15) 86.7 (13/15)
precise 40.0 (6/15) 53.3 (8/15) 60.0 (9/15)

sim_street_road misleading 94.4 (17/18) 88.9 (16/18) 88.9 (16/18)
precise 100.0 (12/12) 91.7 (11/12) 100.0 (12/12)

sim_street_sidewalk misleading 40.0 (6/15) 53.3 (8/15) 73.3 (11/15)
precise 73.3 (11/15) 93.3 (14/15) 80.0 (12/15)

Total Overall 75.3 (113/150) 75.3 (113/150) 83.3 (125/150)

Table 7: Results on CANVAS tasks (success rates, %)

6 Conclusion

Embodied AI has long struggled with the prohibitive cost of collecting large-scale physical
interaction data, limiting its ability to benefit from internet-scale resources. To address this
challenge, we proposed using desktop interactions as an abundant and low-cost substrate
for pretraining. Our contributions are threefold: (1) the OWA Toolkit, which standard-
izes and compresses diverse desktop data into a scalable format; (2) the Generalist-IDM, a
timestamp-based inverse dynamics model that generalizes across unseen games and demon-
strates a pathway toward internet-scale pseudo-labeling; and (3) VAPT, which explores the
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transfer of desktop-pretrained representations to robotics tasks. Leveraging 1.3K+ hours of
human and pseudo-labeled data, our framework achieves 96.6% success on LIBERO manip-
ulation and 83.3% on CANVAS navigation, demonstrating that digital sensorimotor pat-
terns can directly improve embodied AI benchmarks. We release all our tools, datasets,
and models publicly to enable the community to build upon this foundation and further
investigate desktop-to-embodied transfer. These results establish desktop data as a practi-
cal and scalable resource for advancing embodied intelligence, opening a new path toward
general-purpose agents without relying on prohibitively expensive physical data collection.

Reproducibility Statement

To ensure full reproducibility of our work, we release comprehensive resources and docu-
mentation. All source code for the OWA Toolkit (ocap recorder and OWAMcap format im-
plementation), Generalist-IDM training, and downstream task fine-tuning is publicly avail-
able at https://anonymous.4open.science/r/Generalist-IDM-9B13, including detailed
installation instructions and usage examples. The complete 2.6K hour desktop dataset (335
hours newly collected, 2.3K hours converted) and 1K+ hours of pseudo-labeled data are
accessible through the same repository with standardized OWAMcap format specifications
described in Section 3 and Appendix A. Pre-trained model weights for both Generalist-IDM
and VAPT foundation models are provided along with training configurations. Hyperparam-
eters and training schedules are detailed in Appendix E, including batch sizes, learning rates,
and hardware requirements (8 H100 GPUs for IDM training). Data preprocessing pipelines,
including temporal offset implementation (Section 4) and event tokenization schemes (Ap-
pendix C), are fully documented with reference implementations. Evaluation protocols and
metrics are specified in Section F with corresponding evaluation scripts in the repository. For
compute-constrained researchers, we release smaller dataset subsets and checkpoint models
at various training stages to facilitate partial reproduction and ablation studies.
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A OWA Toolkit Details

A.1 Format Comparison

Prior desktop datasets commonly adopt one of two storage strategies. The LeRobot
dataset (Cadene et al., 2024), CS:GO dataset (Pearce & Zhu, 2022), and the CraftJarvis
"minecraft-vla-sft" dataset (He et al., 2025) store image-encoded frames directly in a single,
monolithic table. While this layout is sufficient for training, it is ill-suited for recording be-
cause long-table stores typically do not support efficient real-time appends. By contrast, the
VPT dataset (Baker et al., 2022) packages each sample as an MP4–JSONL pair. However,
JSONL lacks the ability to interleave heterogeneous, typed streams with chunking and in-
dexing. In practice, this limitation results in poor or unavailable topic-wise random seeking
and reduced crash-safety, as writes are unreliable under unexpected termination. Further-
more, datasets that rely on image encoding are substantially less storage-efficient compared
to standard video codecs.
The robotics community has encountered similar multimodal logging challenges. Traditional
ROS bags exhibit performance and extensibility limitations (Foxglove, 2021), which moti-
vated the development of the MCAP format (Foxglove, 2022): an open-source container
format designed with efficient indexing and compression. MCAP has since become the de
facto logging standard for ROS 2 (Foxglove, 2022; Foxglove Developers, 2024), demonstrat-
ing the benefits of specialized data formats for embodied AI research. However, no equiva-
lent standard has been established for desktop datasets, motivating our introduction of the
OWAMcap format.

A.2 Compression Efficiency

OWAMcap achieves substantial storage savings across multiple datasets, demonstrating its
efficiency and scalability. For the CS:GO dataset (Pearce & Zhu, 2022), replacing the orig-
inal HDF5 storage with OWAMcap (mkv+mcap) reduces the storage requirement from
689 GiB to 20 GiB—a 34.45× reduction. Similarly, converting the VPT dataset (Baker
et al., 2022) from JSONL to OWAMcap (mcap format) shrinks disk usage from 1.06 TiB to
7.12 GiB, achieving a 152× reduction. This significant compression arises from two different
aspects: (1) from using video encoding instead of saving raw image buffer on the CS:GO
dataset’s HDF5 and (2) from mcap’s efficiency in representing/storing information on the
VPT dataset’s jsonl.

A.3 Video Compression Performance

OWAMcap’s another advantage of MediaRef, flexible system supporting storing media on
(1) embedded (2) external media. We support storing media on both external image file and
external video file. This flexible design leads opportunity to acquire significant compression
efficiency of video encoding, such as H.265/HEVC. To further evaluate the benefits of video
encoding, we benchmarked video compression performance for various encoding. Table 8
shows that video encoding provides superior compression rates while maintaining visual
quality, enabling large-scale storage without compromising data fidelity. ocap is storing all
media in H.265 by default and we observed similar compression ratio for recorded files.

A.4 ocap Architecture

The implementation of ocap is designed to maximize recording performance and reliabil-
ity. ocap leverages Windows APIs, including DXGI (Microsoft Corporation) for hardware-
accelerated screen capture, WASAPI for low-latency audio recording, and direct input
event capture for precise keyboard and mouse logging. The media pipeline is built on
GStreamer (GStreamer Team) and employs H.265/HEVC encoding (ITU-T, 2024; Sullivan
et al., 2012) to achieve high compression efficiency while maintaining visual quality. The
overall architecture, shown in Figure 5, integrates video, audio, and interaction streams
within the OWAMcap format while ensuring synchronized, crash-safe recording.
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Format Size per Frame Total Size Compression Ratio
Raw BGRA 5.97 MB 4.2 GB 1.0× (baseline)
PNG 1.87 MB 1.31 GB 3.2×
JPEG (Quality 85) 191 KB 135 MB 31.9×
H.265 (keyframe 0.5s) 27.8 KB 19.6 MB 217.8×

Table 8: Compression performance comparison for various encoding on our
recorded Minecraft video. Desktop screen capture at 1920×1080 resolution, 12 seconds
@ 60 Hz. H.265 encoding uses nvd3d11h265enc for hardware acceleration. Video encoding
yields significantly higher compression ratios than other formats. ocap is storing all media
in H.265 by default and we observed similar compression ratio for recorded files. Note that
size per frame for H.265 is an average over all frames, as keyframes are larger.

Figure 5: Architecture of ocap desktop recorder.

A.5 Screen Capture Performance Benchmarks

ocap employs H.265/HEVC encoding for video content and AAC encoding for audio streams,
enabling real-time recording with minimal system overhead. Table 9 compares the capture
performance of ocap against existing alternatives, showing that our implementation con-
sistently achieves higher frame rates and lower CPU utilization while preserving recording
fidelity.

Library Avg. Time per Frame Relative Speed
owa.env.gst 5.7 ms 1.0× (baseline)
pyscreenshot 33 ms 5.8× slower
PIL 34 ms 6.0× slower
MSS 37 ms 6.5× slower
PyQt5 137 ms 24× slower

Table 9: Screen capture performance comparison. Benchmarked on Intel i5-11400
with GTX 1650. ocap achieves 6× faster performance than common alternatives through
Windows API and GStreamer integration.

A.6 Comparison with Existing Recorders

To assess feature coverage and efficiency, we compared ocap against commonly used desk-
top recording frameworks. As shown in Figure 6, ocap is the only system that provides
synchronized multimodal recording, robust crash-safety guarantees, and efficient compres-
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sion in a single framework. These advantages make ocap a uniquely comprehensive solution
for large-scale desktop interaction logging.

Figure 6: Comparison of key features between ocap and other desktop recording tools.

B Dataset Details

B.1 Collection and Quality Assurance

We collected the dataset using a distributed approach supported by contributions from
community volunteers. To ensure participant privacy, we applied automated detection tech-
niques followed by manual review to remove any sensitive information. Quality assurance
involved both automated and manual procedures. Automated validation checked for tempo-
ral alignment issues and corrupted recordings, while human annotators manually evaluated
the realism and fidelity of recorded behaviors. The final dataset captures a wide range of
desktop interaction patterns, including navigation behaviors, application switching, text
input, menu interactions, and multi-step task execution.

B.2 Annotator Calibration and Protocols

Before recording, contributors completed an ocap calibration wizard that verified refresh
rate, display resolution, cursor fidelity, and input-device mapping. Annotators—either mod-
estly compensated participants or volunteers—followed standardized game prompts covering
navigation, combat, and resource-management scenarios; detailed environment statistics are
listed in Table 10. All sessions were screen-captured at FHD or QHD 60 Hz with synchro-
nized mouse and keyboard traces, and ocap’s turnkey workflow meant anyone could gather
synchronized data with minimal setup; annotators re-ran the calibration sequence whenever
their hardware changed.
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Game/Application Category Genre External Hours
Apex Legends ID FPS No 25.8
Euro Truck Simulator 2 ID Driving No 19.7
Stardew Valley ID Top-Down Sim No 16.1
Cyberpunk 2077 ID Open-World, RPG No 14.6
Rainbow Six Siege ID FPS No 13.8
Grand Theft Auto V ID Open-World, Driving No 11.7
Slime Rancher ID Simulation No 11.1
Medieval Dynasty ID Simulation, RPG No 10.7
Dinkum ID Sandbox, Survival No 10.5
Raft ID Survival, Co-op No 10.3
Satisfactory ID Factory-Building No 10.1
Minecraft (SP 1.21.8) ID Open-World, Sandbox No 10.1
Grounded ID Survival, Co-op No 10.1
Ready Or Not ID Tactical FPS No 10.0
Counter-Strike 2 ID FPS No 9.9
Core Keeper ID Sandbox, Survival No 9.4
Barony ID Roguelike RPG No 9.3
Monster Hunter Wilds ID Action RPG No 8.7
Brotato ID Top-Down Shooter No 6.1
PUBG: Battlegrounds ID FPS, Battle Royale No 4.9
Total Used for Train and test 258.7
Ogu and the Secret Forest OOD Adventure, Puzzle No 2.3
Battlefield 6 (Open Beta) OOD FPS No 2.3
Eternal Return Collection MOBA, Survival No 17.3
MapleStory Worlds-Southperry (EA) Collection Open-World, Sandbox No 14.1
Overwatch Collection FPS, Hero Shooter No 10.3
Enshrouded Collection Survival, RPG No 10.1
Ogu and the Secret Forest Collection Adventure, Puzzle No 2.3
Vampire Survivors Collection Top-Down Platformer No 2.8
Battlefield 6 (Open Beta) Collection FPS No 2.3
Skul Collection Roguelike Platformer No 2.0
PEAK Collection Casual/Arcade No 1.8
Super Bunny Man Collection Platformer, Co-op No 0.7
VALORANT Collection FPS No 0.3
Total (Collected) 335.6

Table 10: Collected desktop data statistics. The dataset includes internally collected
demonstrations across diverse games and applications.

Game/Application Category Genre External Hours
Minecraft - VPT (Baker et al., 2022) Converted Open-World, Sandbox Yes 2194
CSGO - CS_DM (Pearce & Zhu, 2022) Converted FPS Yes 100
Total (Converted) 2294.0

Table 11: Converted dataset statistics. Converted data from existing public benchmarks
complement the collected corpus.

B.3 Converted Data

The converted dataset includes Minecraft demonstrations from Baker et al. (Baker et al.,
2022) and Counter-Strike 2 data from Pearce et al. (Pearce & Zhu, 2022). These external
sources were standardized into the OWAMcap format, ensuring consistency and seamless
integration across different datasets.
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B.4 Preprocessed Dataset

Before training, we applied preprocessing to handle temporal offsets. Specifically, after ap-
plying a temporal offset τ , only the sequences of action labels were shifted, while the ob-
servations remained unchanged. Additionally, we filtered out inactive segments where no
actions occurred for extended periods to reduce noise and improve training efficiency.

B.5 Pseudo-labeled Dataset

We collect high-quality YouTube gameplay videos through a combination of targeted search
and bulk download. For the search phase, we used the query template “GAME_NAME
no commentary,” where the term no commentary is widely understood to indicate pure
gameplay videos without additional overlays, commentary, or editing. After obtaining video
links, we downloaded the videos using the open-source tool yt-dlp. To ensure consistency,
we restricted the maximum resolution to 480p. In addition, frequent cookie renewal and
a download rate cap of 62.5 Mb/s were necessary to bypass YouTube’s automated bot
detection mechanisms. Through this pipeline, we successfully curated over 1,000 hours of
high-quality gameplay footage for pseudo-labeling. The total collected video duration per
game is summarized in Table 12.

Game Duration (h)
Stardew Valley 69.7
Minecraft 62.8
Monster Hunter Wilds 63.3
Dinkum 60.8
Satisfactory 59.8
Cyberpunk 2077 58.5
Medieval Dynasty 58.4
Raft 58.0
Core Keeper 58.0
Euro Truck Simulator 2 57.3
Grounded 57.2
Rainbow Six 56.3
GTA 5 54.1
Brotato 52.6
PUBG 50.7
Counter-Strike 2 49.8
Apex Legends 48.7
Slime Rancher 33.3
Ready or Not 29.0
Barony 16.7
Total 1054.8

Table 12: Pseudo-labeled Duration by Game (G-IDM). Total effective hours of suc-
cessfully processed pseudo-labeled data per game.

C Event Tokenization Details

To train the Generalist IDM effectively, raw desktop interaction logs must be converted
into a structured representation that the model can understand. We represent the entire
interaction sequence as a stream of discrete event tokens. Each event corresponds to either
an observation or an action. Observation events capture changes in the visual state of the
environment, such as screen updates (Screen Events), while action events represent user
inputs, including Keyboard Events (key presses and releases) and Mouse Events (clicks,
movements, and scrolls).
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By tokenizing data at the event level, we unify heterogeneous inputs into a consistent,
sequential representation that can be modeled effectively using a single decoder-only trans-
former. This representation accommodates both asynchronous observations and actions
while preserving fine-grained temporal alignment between them.

C.1 Event Token

We append specialized tokens to the model’s vocabulary for desktop interaction modeling.
Event structure tokens (<EVENT_START> and <EVENT_END>) delineate the boundaries of
interaction sequences, while event type tokens (<KEYBOARD>, <MOUSE>, <SCREEN>) seman-
tically categorize the modality of each event.
Numeric encoding tokens (<0> to <9>) serve multiple purposes:

• Mouse movement deltas are encoded using a configurable base system (default: [2,
10, 10, 10]), allowing efficient representation of signed values within a ±1999 pixel
range.

• Mouse scroll values are similarly quantized using base-10 tokens.
• Timestamps are encoded using temporal bases (default: [10, 10, 10]), covering a

10-second window with 10ms resolution. Timestamps are cyclic, wrapping from 999
back to 000.

Mouse interaction tokens include:

• Sign tokens (<SIGN_PLUS>, <SIGN_MINUS>) for indicating the direction of movement
deltas,

• Mouse button tokens (<MB_0> to <MB_15>) for encoding mouse button flags in hex-
adecimal.

Keyboard interaction tokens consist of:

• Virtual key code tokens (<VK_0> to <VK_255>) to represent all Windows virtual key
inputs,

• Action tokens (<press>, <release>) to indicate key state transitions.

This factorized token design creates modular, modality-specific token spaces while main-
taining a compact vocabulary. Mouse button flag definitions are provided in Table 13, and
the full virtual key code mapping is shown in Table 14.

Flag Name Hex Value Description
RI_MOUSE_NOP 0x0000 No operation
RI_MOUSE_LEFT_BUTTON_DOWN/UP 0x0001/0x0002 Left button press/release
RI_MOUSE_RIGHT_BUTTON_DOWN/UP 0x0004/0x0008 Right button press/release
RI_MOUSE_MIDDLE_BUTTON_DOWN/UP 0x0010/0x0020 Middle button press/release
RI_MOUSE_BUTTON_4_DOWN/UP 0x0040/0x0080 Side button 4 press/release
RI_MOUSE_BUTTON_5_DOWN/UP 0x0100/0x0200 Side button 5 press/release
RI_MOUSE_WHEEL 0x0400 Vertical scroll wheel
RI_MOUSE_HWHEEL 0x0800 Horizontal scroll wheel

Table 13: Windows Raw Mouse Button Flags

C.2 Event Token Structure

All event tokens follow a consistent structure:

<EVENT_START> < event_type >< timestamp >< event_detail > <EVENT_END>

where:
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Key Name VK Code Description Key Name VK Code Description
LBUTTON 1 Left mouse button KEY_0–KEY_9 48–57 ’0’–’9’ keys
RBUTTON 2 Right mouse button KEY_A–KEY_Z 65–90 ’A’–’Z’ keys
CANCEL 3 Control-break LWIN 91 Left Windows key
MBUTTON 4 Middle mouse button RWIN 92 Right Windows key
XBUTTON1 5 X1 mouse button APPS 93 Applications key
XBUTTON2 6 X2 mouse button NUMPAD0–9 96–105 Numpad 0–9
BACK 8 Backspace key MULTIPLY 106 Numpad *
TAB 9 Tab key ADD 107 Numpad +
CLEAR 12 Clear key SUBTRACT 109 Numpad -
RETURN 13 Enter key DECIMAL 110 Numpad .
SHIFT 16 Shift key DIVIDE 111 Numpad /
CONTROL 17 Ctrl key F1–F12 112–123 F1–F12 function keys
MENU 18 Alt key NUMLOCK 144 Num Lock
PAUSE 19 Pause key SCROLL 145 Scroll Lock
CAPITAL 20 Caps Lock LSHIFT 160 Left Shift
ESCAPE 27 Esc key RSHIFT 161 Right Shift
SPACE 32 Spacebar LCONTROL 162 Left Ctrl
PRIOR 33 Page Up RCONTROL 163 Right Ctrl
NEXT 34 Page Down LMENU 164 Left Alt
END 35 End key RMENU 165 Right Alt
HOME 36 Home key OEM_1 186 ; : key
LEFT 37 Left arrow OEM_PLUS 187 = + key
UP 38 Up arrow OEM_COMMA 188 , < key
RIGHT 39 Right arrow OEM_MINUS 189 - _ key
DOWN 40 Down arrow OEM_PERIOD 190 . > key
INSERT 45 Insert key OEM_2 191 / ? key
DELETE 46 Delete key OEM_3 192 ‘ key

Table 14: Windows Virtual Key Codes

• <EVENT_START> and <EVENT_END> are special tokens that delimit each event
• <timestamp> encodes the precise timing of the event in nanoseconds
• <event_type> specifies the type of event (e.g., <SCREEN>, <KEYBOARD>, <MOUSE>)
• <event_data> contains event-specific information

C.3 Screen Events

Screen events capture visual observations from the desktop environment. Each screen event
contains an image token sequence:

<EVENT_START><SCREEN> < timestamp >< image_tokens > <EVENT_END>

For example:
<EVENT_START><SCREEN><1><8><5><IMG_CONTEXT>256<EVENT_END>

The timestamp <1><8><5> represents 185 time units, and the image is encoded using 256
visual tokens following the InternVL3 tokenization scheme.

C.4 Keyboard Events

Keyboard events encode key press and release actions using virtual key code tokens:

<EVENT_START><KEYBOARD> < timestamp >< vk_token >< action > <EVENT_END>

For example:
<EVENT_START><KEYBOARD><2><0><0><VK_32><release><EVENT_END>

This represents a key release event at timestamp 200, where <VK_32> corresponds to the
spacebar. The action can be either <press> or <release>.
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C.5 Mouse Events

Mouse events are the most complex among input modalities, as they encode continuous
movement, discrete button states, and scroll actions.
<EVENT_START><MOUSE><timestamp><dx_sign><dx_magnitude><dy_sign>
<dy_magnitude><button_flags><scroll_data><EVENT_END>

The optional <scroll_data> token is included only when the <button_flags> field indi-
cates the presence of scroll wheel activity.

Mouse Movement Example. Consider the following mouse event:
<EVENT_START><MOUSE><2><4><5><SIGN_PLUS><0><0><0><2><SIGN_MINUS>
<0><0><1><9><MB_4><MB_8><MB_0><SIGN_PLUS><0><EVENT_END>

This token sequence is decoded as follows:
Timestamp: <2><4><5> represents 2 × 100 + 4 × 10 + 5 = 245 time units.
Mouse Displacement: The displacement uses separate sign and magnitude encoding:

dx: <SIGN_PLUS><0><0><0><2> = +(0 × 1000 + 0 × 100 + 0 × 10 + 2) + 2 pixels (4)
dy: <SIGN_MINUS><0><0><1><9> = −(0 × 1000 + 0 × 100 + 1 × 10 + 9) = −19 pixels

(5)

Button Flags: <MB_4><MB_8><MB_0> encodes button states as hexadecimal digits:
0x48016 = 115210.
This corresponds to:

• 0x400: Vertical scroll wheel event
• 0x080: Mouse button 4 (side button) released

Scroll Data: <SIGN_PLUS><0> indicates no scroll delta (magnitude 0).
Final Interpretation: Mouse moved dx = +2, dy = −19 pixels at timestamp 245, with
scroll wheel activity and side button release.

D Model Architecture Details

For Generalist-IDM, we adopt the InternVL3-1B model (Zhu et al., 2025), which integrates
InternViT as the vision encoder and Qwen2.5 (Yang et al., 2024) as the language back-
bone. InternVL3 is trained with native multimodal pretraining and demonstrates strong
performance on video–text interleaved tasks, making it a suitable foundation for our work.
We expand the model’s tokenizer by adding additional event tokens to represent events in
our desktop data. Furthermore, we transfer the semantic initialization from corresponding
regular language tokens to the newly added event tokens.

E Training Details

The Generalist-IDM was trained on 8 H100 GPUs (80GB) for approximately 24 hours,
totaling 192 H100-hours. The entire training process incurred a cost of only ∼ $800 for
training on 259 hours of human-collected data, highlighting the efficiency enabled by our
OWA Toolkit.
We used the following training schedules:

• Generalist-IDM: 5 epochs
• Specialist-IDM: 5 epochs
• Generalist-IDM (fine-tuning): 3 epochs
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• VAPT (w/o pseudo): 3 epochs on the human-collected vision-action dataset
• VAPT (w/ pseudo): 1 epoch on the pseudo-labeled dataset, followed by 3 epochs

on the human-collected dataset

All experiments were conducted using identical hyperparameters: a global batch size of 128,
a learning rate of 2 × 10−5, and the AdamW optimizer.

F Evaluation Details

F.1 Generation Methods

We implemented an efficient autoregressive inference pipeline for predicting keyboard and
mouse actions from desktop screen captures or YouTube videos. Starting from MCAP files
containing synchronized, timestamped data streams (screen captures and mouse/keyboard
events), we resample the events at fixed intervals (50 ms for screen and mouse events,
pass-through for keyboard inputs) and tokenize them as described in Appendix C. A dy-
namic context manager maintains a sliding window of recent events with efficient embed-
ding caching, using a token context length of 2048. To accelerate inference, we apply several
optimization techniques, including PyTorch model compilation, FlashAttention, and mixed-
precision computation with bfloat16. For multi-GPU inference, we leverage NVIDIA MPS.
The generated token sequences are decoded back into structured MCAP events and subse-
quently evaluated. For pseudo-labeling YouTube videos, we generate MCAP files consisting
of two-minute segments of screen events, excluding the first minute and last two minutes to
mitigate the influence of introductions and outros.
Throughout this work, we evaluate the Generalist-IDM using fully autoregressive action
decoding, both for the experiments in Section 5 and for pseudo-labeling YouTube videos.
Teacher forcing was not used.

F.2 Evaluation Metrics

We evaluate the performance of Generalist-IDM using a set of fine-grained metrics that
capture the correctness of predicted actions. For mouse movements, we use Pearson cor-
relation (X/Y axes) and Scale ratio (X/Y axes) to capture the directional and spatial
shape of the path and the temporal ordering of points. For discrete actions, such as key-
board presses and mouse button clicks, we report classification accuracy. All metrics are
calculated over non-overlapping 50ms temporal bins, enabling precise alignment between
predicted and ground truth event sequences.
The Scale ratio metrics, including scale_ratio_x and scale_ratio_y, measure relative scaling
differences between ground-truth and predicted mouse movements along the x and y axes.
They quantify how much predictions are stretched or compressed compared to the source
movements.
Formally, for n bins with source vectors si = (si,x, si,y) and predicted vectors di = (di,x, di,y):

scale_ratio_x =
1
n

∑n
i=1 |si,x|

1
n

∑n
i=1 |di,x|

, (6)

scale_ratio_y =
1
n

∑n
i=1 |si,y|

1
n

∑n
i=1 |di,y|

. (7)

To ensure interpretability, ratios < 1 are inverted so that all values are ≥ 1.
Interpretation:

• 1.0: perfect scaling match between source and prediction
• > 1.0: scaling mismatch, where larger values indicate greater discrepancy
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G Downstream Details

G.1 Robot Manipulation

We train a manipulation policy identical to openvla-oft (Kim et al., 2025), except that
the vision–language backbone is replaced with InternVL3-1B (or its OWA variant). The
policy retains the L1 regression head for continuous action prediction, employs bidirectional
attention in the policy stack, and uses parallel decoding with action chunking (chunk size
K = 8).
The inputs consist of a third-person image, a wrist-camera image, the robot proprioceptive
state, and a language instruction, resulting in two images per step (exocentric and egocen-
tric). Training uses a filtered dataset where unsuccessful demonstrations are removed.
Optimization follows the openvla-oft recipe: LoRA rank 32, learning rate 5 × 10−4, batch
size 8, and image augmentation enabled. Linear decay is applied after 10,000 steps, with a
total training budget of 15,005 steps. Checkpoints are saved every 1,000 steps, keeping both
periodic and latest versions.
Training is conducted on a single node with 8 GPUs via torchrun, with the same launch
flags as openvla-oft, except for swapping the backbone to InternVL3-1B/OWA.
Evaluation is performed on the LIBERO benchmark (Liu et al., 2023), which includes four
suites of manipulation tasks: (1) Spatial, varying scene layouts with fixed objects; (2) Object,
varying the set of objects in a fixed scene; (3) Goal, testing goal-conditioned behavior; and
(4) Long (LIBERO-10), long-horizon compositional tasks involving diverse objects, layouts,
and goals. We report the average success rate over 500 episodes for each suite.

G.2 Robot Navigation

We established a baseline following CANVAS (Choi et al., 2024) by training an InternVL3-
based model architecture on the COMMAND dataset. The baseline model was initialized
with the default InternVL3 weights, whereas the VAPT w/o pseudo and VAPT w pseudo
were trained from pretrained weights. All models were trained with full parameter unfreez-
ing.
For optimization, we employed AdamW with separate learning rates: 2 × 10−5 for the LLM,
and 5×10−5 for both the projector and vision encoder. Training was conducted with a batch
size of 32 over 5 epochs, and each model utilized 128 waypoint tokens. In the main exper-
iments, inference of CANVAS models was performed on a single NVIDIA H100 GPU. All
evaluations were repeated three times per test dataset with randomized initial orientations.

H Ethics Statement

We acknowledge and adhere to the ICLR Code of Ethics.

Human Data Collection. Our dataset was collected from 14 volunteer annotators who
provided informed consent for gameplay recordings. Participants were fully informed about
screen capture and input logging procedures and could withdraw at any time. All data
underwent automated and manual review to remove any personally identifiable information
before research use.

Public Data Usage. We processed only publicly available YouTube videos with permis-
sive licenses for pseudo-labeling. Our focus on gaming content inherently minimizes privacy
concerns compared to general desktop recording, as gaming interfaces rarely contain sensi-
tive personal information.

Transparency and Responsible Release. To ensure responsible use, we will publicly
release all code, data collection tools, and model weights with comprehensive documentation.
We acknowledge that vision-action models could have dual-use potential; however, our focus
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on standardized gaming environments and transparent methodology helps mitigate misuse
risks. Our computational approach (requiring only modest GPU resources) democratizes
access while reducing environmental impact compared to large-scale training paradigms.

I Limitations

We evaluate our approach exclusively on simulation benchmarks to establish reproducible
baselines, with real robot validation deferred to future work. The differential impact of
pseudo-labels (improving navigation but degrading manipulation) suggests task-specific
transfer mechanisms that require further investigation. Our dataset focuses primarily on
gaming interactions, which may not capture the full spectrum of desktop activities relevant
to general-purpose robotics. Despite these constraints, our framework democratizes embod-
ied AI research by reducing storage requirements by 152× and training costs to under $1000,
making large-scale vision-action pretraining accessible to resource-limited academic labs.
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